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Almraet--A wide range of experimental holdup data have been analysed on the basis of the general 
correlations of Chen & Spedding (1983). For upward inclined flow, holdup data in the range 
(Ro/gt) = 4.0 to 275 were handled using a modification of the Chen & Spedding method, and for 
the case of (/~J/~t) ~< 4.0, the modified Armand equation was found to be suitable. Horizontal 
stratified flow was examined using the Bernoulli equation, and shown to be a limiting case of the 
free draining of a tube initially filled with liquid. For downward inclined stratified flow, the 
Manning equation predicted the holdup accurately for low liquid rates and small angles of 
inclination. In addition, for these two cases of horizontal and downward stratified flow, the holdup 
also was examined in terms of the critical depth of flow as determined using the total energy 
relation. 

I N T R O D U C T I O N  

Spedding & Chen (1979a, b) have suggested a general correlation for holdup prediction in 
horizontal two phase flow. The correlation consisted of a plot of holdup ratio 1~/i~L against 
the flow rate ratio Qa/QL. The form of the correlation was suggested by Butterworth (1975) 
and subsequently has been justified theoretically by Chen & Spedding (1983). A limited 
range of horizontal experimental data were used by these latter authors to show that holdup 
data may be broadly classified into three major groups, depending on the type of flow 
pattern, with different relationships being found to represent the data for each group. For 
bubble and slug type flows, the holdup was given by the equation due to Armand (1946), 

= 0:2 + 1.2/(Qa/QL) [l] 

which was shown to be a special case of the theoretical development due to Nguyen & 
Spedding (1977). With stratified type flow the holdup was given by a series of relations 
which were derived using a simple separated flow model. Annular flow, on the other hand, 
was satisfactorily represented by a semi-empirical correlation for the 1~/1~ L values 
above 4. 

It is the purpose of this work to review and extend the application of this type of 
correlation technique to the horizontal two-phase flow situation and to endeavour to 
expand its applicability to the case of inclined flow. 

Horizontal flow 
The holdup data of Spedding & Nguyen (1976) and C h e n &  Spedding (1979) ob- 

tained for air-water flow in a 4.54 em i.d. pipe over a 2 m length are plotted in figures 
1 and 2. In figure 1 the stratified flow data were excluded from the plot while in figure 2 the 
stratified type flow data were included. The flow regimes given on the figures unfortunately 
are not discernable following reproduction. This is particularly the case in figure 2 where the 
data points for the various stratified regimes virtually are obliterated by the curves which 
in all cases lie directly over the points. The accuracy of t h e / ~  data was better than _+ 1%. 
It should be noted that use of the factor Ko/I~L magnifies the scatter of the results in general 
while an order of magnitude increase in l~a/l~ L approximately halves the expected scatter of 
data points. 
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The correlation of figure 1 shows that the annular type flow data fitted the semi- 
empirical correlation suggested by Spedding & Chen (1979a, b). 

R~/RL = 0.45 [Q~/Qd °.65 [2] 

for values of R~//?L ) 4, whe re /~  and/~L are the gas and liquid holdups and Q6 and QL 
the gas and liquid volumetric flow rates. Below R~/RL = 4 the data are predominantly of 
the slug flow type and do not give a good fit to the Armand equation. In addition a wide 
scatter is in evidence. The bubbly flow regime data, on the other hand, give close agreement 
with the Armand relation. The basic reason for the wide scatter in the slug flow regime 
data and the lack of fit to the Armand equation, is that the tube length over which the 
holdup was measured was too short to enclose the entire length of  either a slug or a bubble 
with certain types of long slug flow patterns. Thus under conditions where long liquid slugs 
were present the measured liquid holdup would be biased towards the high side whereas 
the bubbly flow regime would be correctly measured in the apparatus since there is little 
sensitivity to the effect of tube length with the bubble regime. Therefore the holdup data 
of Spedding & Nguyen (1976) and Chen & Spedding (1979) can be expected to be 
inaccurate for the slug type flow regimes, giving value for/~L which are on the high side. 

At values of QG/QL ) 15,000 the data in figures 1 and 2 gave a constant value of/~//~L. 
In this region of high gas flow and low liquid flow, the liquid is held in two fomas; as 
droplets which are swept along with the gas core as a homogeneous type mixture and as 
a liquid film on the inner wall of the pipe. Armand (1946) showed that the liquid film 
reduces with increasing gas flow rate to a constant asymptotic value of wall flow, i.e. to 
a constant liquid film thickness on the inside wall of the pipe, independent of input liquid 
flow above the critical value. For the experimental conditions of Nguyen & Spedding 
(1976) the liquid holdup gL = 0.00364 gave a liquid film thickness of 0.083 mm at Q~/QL 
15,000. The liquid film in this region of flow was observed to be continuous round the 
inside wall of the pipe. However, when the gas rate was lifted above Q~/QL = 60,000 the 
liquid film was broken and commenced to strip off the inner wall of the tube. In such a 
region of flow rate the /~//~L value was observed to climb steeply and presumably 
eventually coincided with the homogeneous line where/~//~L = Q~/QL. The maximum gas 
rate obtainable for the experiments of Spedding & Nguyen (1976) and Chen& Spedding 
(1979) was not sufficient to give this region quantitatively on figures 1 and 2, but did allow 
the qualitative nature of the regime t o b e  observed. 

A detailed comparison was made in figures 3 and 4 between the form of correlation 
suggested in figure 1 and a wide range of  data for horizontal flow. Figure 3 compares 
the calculated annular steam-water data of Harrison (1975) for 20 cm internal diameter 
pipe over the pressure range of 0.45-1.23 x 106kgm- l s  -2. The data demonstrates 
reasonable agreement with the correlation suggested in this work, but are of more 
importance in that they show that the correlation is applicable to the steam water system 
in large diameter pipes. 

In figure 4 the data from a number of sources are plotted and again exhibit a general 
agreemnent with the correlation suggested in this work. Some detail needs to be presented 
about these data in order to highlight the breadth of application of the suggested 
correlations. The steam water data of Isbin et al. (1957, 1958) and of Fujie (1964) for 
pressures between 7 x 105 and 7 x 106 k g m - '  s -2 in 1.23 cm i.d. pipe gave good agreement 
with the suggested correlation. Incidently the same is true of the data collected by Von 
Glahn (1962) from various sources which are not included in figure 4 in the interests of 
clarity. The following air-water data gave good agreement with the correlation; Chrisholm 
& Laird (1958) for a 2.69 cm i.d. pipe, the Dartmouth correlation of WaUis (1969) and 
Farmer et al. (1978) for a 2.5 cm i.d. pipe. The annular flow data of Hewitt et al. (1961) 
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HOLDUP IN TWO PHASE FLOW 3 ] 3 

for a 3.18 cm i.d. pipe showed reasonable agreement with the correlation. The data of 
Andrews (1966) obtained on 515 m of 5.25 cm i.d. pipe for water-natural gas flow gave 
a good agreement with the Armand relation. Later work by Eaton (1970) on the same 
apparatus and system but with a 10.5 cm i.d. line again gave good agreement with the 
Armand relation for slug type flows. The rest of the data obtained by these two workers 
was in the stratified regions and while they were not applicable to the current discussion 
it is worth noting that general agreement was obtained with the correlations in figure 2. 
The data of Hoogendoorn (1957) for oil-water flow in a 14 cm i.d. pipe gave good 
agreement with the Armand relation for slug type flows but other data were ignored here 
as they were in the stratified regimes, but they gave reasonable agreement with figure 2. 
The data used by Lockhart & Martinelli (1949) proved to be very scattered and were not 
used in this check. About a third of the data of Johnson & Abou-Sabe (1952) did not give 
agreement with the correlation but this was to be expected since they were collected under 
conditions pertaining to a study of heat transfer. 

For horizontal two phase flow with the stratified type flow regimes the data in figure 
2 initially exhibit a series of horizontal lines at lower gas rates which depend on superficial 
liquid velocity I?sL but eventually at higher gas rates join into the holdup correlation of 
Spedding & Chan (1979a, b) which has already been obtained for annular type flow. Data 
from other literature sources such as Beggs (1972) have not been obtained in a systematic 
manner, i.e. by setting the liquid rate and altering the gas rate, so give individual points 
which require interpolation. However, it appears much of the available data do give 
reasonable agreement with figure 2. Spedding & Nguyen (1978) suggested that this type 
of flow regime has parallels with open channel flow. This aspect is examined in detail in 
the following section using the techniques outlined by Chow (1959) and Henderson (1966). 

Applying the Bernoulli equation to the case of horizontal stratified flow for a circular 
conduit as given in figure 5. 

e + vL 2 = = E [31  -gi = y I +  2g 

where P is the hydrostatic pressure, PL is the liquid density, y is the liquid depth, g is the 
gravitational acceleration, I?L is the average liquid velocity over a channel cross section 
and E is the specific energy. For the case of inviscid flow the specific energy must be 
constant, so 

(E - y)AL 2 = Q~/2g [4l 

";'~~" [-- -- TOT--~e"E--NE~RGY LIN, E . . . . .  1]~'~--- 

i i Y2 

1 
L 

-J~Dotum 
Figure 5. Schematic representation of  free surface channel f low in a horizontal circular conduit. 

MF VoI. 100 No. 3.~E 



314 P.L. SPEDDING and J. J. J. CHEN 

where AL is the cross-sectional area of  liquid flow in the conduit which must be a function 
of y, the liquid depth. Since for steady state conditions, the volumetric liquid flow rate must 
be a constant, then [4] is a cubic with two real roots which are asymptotic to two equations 
as shown in figure 6. The relations between AL and y used in the calculation of  figure 6 
are given in figure 7. It is observed that by using the method of  presentation given in figure 
7 a straight line relation with AL can be obtained over a wide range. At a given 
flow rate QL there is a minimum specific energy Ec which occurs at the critical depth yc 
where the Froude number (Fr = ~L2/gy~) is equal to one. Further at this point of  critical 

I I I 
/ I 

/ 
/ 

/ 

2 ' / / / /  
. / 

. ' / /  
¢ m / 111 

1 -  Z A l 60 

/ 

0 w , , , I ' ' ' t . . . .  I 

0 1 2 3 

EE c m  H20 

Figure 6. Calculated liquid depth against specific energy for free surface channel flow in a 
horizontal circular conduit. QL = liquid volume flow rate. 

, , , I , , , ~ I , , o , I , , .t 

A / r  2 = 1"502 

1" 4 7 e ( y / r )  - 0 " 1 3 2  

05 TO 1~ 20 

Figure 7. The relationships between the area o f  liquid flow in a circular pipe and liquid depth. 
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flow the conduit will give the maximum flow rate for a given specific energy. The appendix 

details the method of calculation for the data of figure 6. 
In figure 8 the critical depth of flow is presented for the various experimental conditions 

employed by Spedding & Nguyen (1976) and Chen & Spedding (1979) when collecting the 
data used in obtaining figure 2. The holdup data are converted to y the depth of flow in 
the pipe, by calculating out the area of liquid flow, 

where A, is the total cross sectional area of the pipe. The depth is found by use of figure 
7. It will be observed that the actual experimental liquid depth obtained is much greater 
than the critical depth calculated from [4]. In fact the actual depth corresponds to twice 

the critical depth in the low liquid flow range. However, as the liquid flow rate exceeds 
about QL = 80 cm3 s-l, that is, the superfkial Reynolds number, 

ReSL = th~m~~dh) = 2250 PI 

where d is the tube diameter, pL is the liquid density and pL is the liquid viscosity, the 
experimental data departs from this relation towards the condition of draining of an 
initially liquid filled horizontal tube. The point of departure is when turbulent conditions 
commence and is shown by the arrows of figure 8. Extending the reasoning of Bejamin 
(1968) it is possible to calculate out the limiting condition of depth given as a dashed line 
on figure 8. 

Figure 9 illustrates the draining condition in a tube filled with a liquid. Normally the 
air filled cavity or semi-infinite bubble is advancing into the upper section of the tube as 
the liquid drains away in the opposite direction in the lower part of the tube. In order to 

Do’ ” ” ” ” ” ” ” ” ’ ““.” _ _ - - _ _ _FimLf_mUWdf&IPO ___-------- --- 

. 
2 

Y I/-:- Yc from oprn channel flow 

cm . 

stratitie flow 

Figure 8. Actual depth of liquid flow against liquid volumetric rate for flow in a horizontal 4.54 cm 
dia. pipe. Limiting height is taken from tube drainiog situation. The y, values are calculated from 

open channel flow theory. 
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Figure 9. Schematic representation of the draining condition for a horizontal pipe initially filled 
with liquid. 

make the problem more tractable it is assumed that the liquid passes away at such a 
velocity that the cavity remains stationary with a stagnation point  0 at its tip and a free 
boundary above the down stream liquid. The cross-sectional area o f  liquid flow. 

where 

. 

A L ~ .  (7[ - -  o~ -Jr -~ s m  2a)r  2 = nr2(1 -- ~) [7] 

( 1 ) 
= ~t - ~ s m 2 0 t  /n [8] 

and 2~t is the angle subtended at the tube axis by the free surface far downstream, and 

r is the tube radius. 
From the equation of  continuity, 

I71/i~ 2 = AL/nr 2 = 1 -- ~. [9] 

Applying Bemoulli 's theorem along the free surface between the stagnation point 0 and 

the asymptotic level o f  liquid far downstream 

~722 = 2g (r -- r cos = -- h) [10] 

where h is the head loss due to friction. The pressure at the top o f  the cross-section for 

upstream is 

1 2 
Pr, = - -  "~PL ~:~I [1 1] 

and the pressure in the liquid below has a hydrostatic variation with depth. The total 

pressure force acting on a cross-section is, 

Fp, = (Prl + pzgr)  lrr2 [12] 
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while the total flow force must have the momentum flux added 

Ffl = (Pr, + PLg r + PL ["I2) gr2 

= pL(g r 1 - 2 \ 2 X -~V, )Ttr . [13] 

Downstream the corresponding total flow force is 

Ff2 = 2pLgr 3 (COS = -- COS 0)sin20 dO [14] 

22,3,~ : p L g r  ALCOSOt +-~r sm 0t) [15] 

Since Fz~ = Fz2 and using [9] and [10] to eliminate the velocity term gives, 

~2(1 -- COS =) -- ~ sin3= + ~ cos = -t- hr ( + 1 - ~2) = 0. [16] 

Figure 10 details graphs of h/d, iTt2/(gr)tTL2/(gr) and QL2/(gr 5) against y/d.  
The calculations were made by first assuming a value of  y / d  and finding the 

corresponding values for oe and ~. Solution of  [16] under these conditions gives the 
corresponding value of h/d. The flow force relations [13] and [15] must be equal and since 
[9] gives the relation between the two velocities it is possible to show that 

and 

1722 = 2gr (1 - c o s = - - ! )  

~?= 2gr(1- 02 (1-cos ~-!). 

[17] 

[18] 

v, 1.0 

,/d 

Figure I0. Graphs of various dimensionless parameters found for the free draining condition of 
a horizontal pipe considered as functions of y/d, the dimensionless liquid depth. 
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Since the rate of discharge of  liquid is equal to the rate of  increase of the cavity above 
the liquid in the tube, 

QL = 171~r2~ [19] 

and 

The inviscid condition applies (i.e. h = 0) when y/d = 0.536 and the treatment of 
Benjamin (1968) then is relevant. At y/d = 0.680 the values of  h/d and ffl2/(gr) are at a 
maximum showing that the speed of  motion of the bubble is directly influenced by the 
applied forces as reflected by the frictional resistance ratio. Thus when the frictional 
resistance is positive at y/d > 0.563, the flow depth is greater than the minimum value 
obtained under inviscid conditions because the flow of liquid out of  the tube is hindered 
by the friction. Thus steady flow in which the receding stream fills more than 0.563 d. of 
the pipe is possible if energy loss occurs. To obtain the condition h/d < 0.563, requires the 
frictional energy loss h to be negative, which would necessitate an external supply of energy 
to sustain steady flow. As y/d increases from its value of  0.563 at h = 0, Qfl/(gd 5) falls 
steadily from the invicid condition. Thus the rate of liquid flow out of the tube cannot 
be made larger than the value for free flow without energy loss and the only way in which 
it can be increased is by pumping the liquid in order to overcome the resistance to flow. 

The upstream Froude number, 17t2/(gr), first increases with y/d to a maximum value 
at y/d = 0.680 and then steadily falls away. The maximum value of  the upstream Froude 
number coincides with the maximum in the h/d curve in a similar manner as that reported 
by Benjamin (1968) for a rectangular channel although the exact value was smaller. The 
form of the I:'t2/(gr) against y/d graph shows that within a certain range o f y / d  values there 
are two possible values for the downstream depth for each value of  upstream velocity. For 
example, when inviscid conditions pertain the receding liquid stream is supercritical and 
may be shown to have a Froude number of 1.328 but it is possible for it to acquire another 
larger depth in the subcritical range by passing through a hydraulic jump. Therefore, 
steady flow in the range of y/d between 0.563 and about 0.768 would be virtually 
impossible to maintain particularly close to the latter value since any flow instability, for 
example, induced by wave formation, would precipitate the hydraulic jump which is latent 
in the particular conditions. The result would be that the receding liquid flow would 
commence in the supercritical condition but would soon pass into the alternative depth 
at subcritical conditions which corresponds to the flow conditions of the free surface 
established upstream. When the hydraulic jump takes place the interface between the liquid 
and gas phases not only rises in height but would tend to become blurred due to the onset 
of gas entrainment in the surface liquid. This would lead readily to a change in flow regime 
and would explain the blurred region shown on figure 8 when the experimental data are 
approaching the free draining conditions. 

The above working and discussion on the draining condition in a tube initially filled 
with a liquid, as illustrated in figure 9, obviously leads to a limiting condition for the 
current two phase flow situation which is being considered in this work. However, the 
development does have relevance in that it casts some light on the stratified situation under 
discussion. Firstly for a pumped or gravity fed liquid condition the liquid holdup in the 
tube will be in general below that of the free draining condition, as suggested by intuitive 
reasoning earlier. Secondly, departure from inviscid condition can be expected to increase 
the liquid holdup. Finally as the liquid rate is increased for given conditions the onset of 
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surface disturbances will precipitate flow conditions that cause the flow to depart from the 
stratified regime before the liquid holdup can reach the free draining situation. Chrisholm 
& Laird (1958) have demonstrated that both liquid holdup and two phase pressure drop 
increase with tube roughness in agreement with the second prediction. The data of figure 
8 show that as the liquid rate is increased the liquid holdup does approach the free draining 
condition but the flow changes into the mixed type regime before the actual data can 
coincide with the theoretically derived free draining condition. 

Vertical upward flow 
Data for vertical upwards two-phase flow in pipes are presented in figures 3, 11-13 

where they are compared with the correlations suggested in this work for horizontal flow. 
The air-water data of Spedding & Nguyen (1976) obtained for a 4.54 cm i.d. tube are 
shown in figure 11 and exhibit a series of  curves which possess a systematic variation with 
superficial liquid velocity. In general the curves are not smooth for values of superficial 
liquid velocity, 17SL < 0.28 m s-  1 but exhibit a number of discontinuities which correspond 
to changes in flow regime. At low values of QdQ,. the flow regimes are the bubble, slug 
and slug plus froth types. At point A, for example, on figure 11 there is an abrupt change 
in slope when the flow regime passes to the annular plus wave type of flow. Again, at point 
B the flow becomes annular while at point C the curve has a tendency to level off as the 
droplet type of flow commences. Similar rather abrupt changes in slope were noted in the 
horizontal case but of course there was no complication of a variation with superficial 
liquid velocity. Conversely with vertical upwards flow there is no complication from the 
stratified regime since it does not occur for the case of vertical upwards flow. 

Thus a correlation for the case of vertical upwards flow, which is developed using the 
two parameters of holdup and volume flow ratios, is complex and cannot readily be 
reduced to a simple form of the type which have been obtained for the case of horizontal 
flow. The variation with superficial liquid velocity which has been mentioned can be 
accommodated by the two relations, 

R~//~L = 1/[0.2 + KIQL/Q~] [211 

for the region /~//~L ~< 4.0 where the Armand relation applied for horizontal flow case, 
and 

/r~/I~L = K2[1 - exp [ - K3Q~/Qd] [QdQA °'65 [22] 

for the region ~ /RL > 4.0-275. The relations 

In (K 0 = -- 1.44 In (17sz.) -- 0.007 [23] 

K2 = 0.14 In (17sz.) + 1.0 [24] 

tn (/(3) = 0.97 In (PSL) -- 3.0 [25] 

provide the observed variation with ITSL. The values of K~.3 are made dimensionless by 
the appropriate choice of units for the numerical constant in (23)-(25). In addition K, has 
an upper limit of about 50 and a definite lower limit of 1.2 corresponding to the Armand 
relation which is obtained at values of 17sL > 1.0 m s -  '. Also K2 and K3 have lower limits 
of about 0.25 and 0.003 and definite upper limits of 0.68 and 0.0057, respectively. Of 
course, as the value of Qa/QL increases to somewhat beyond 104, the value of ~ / ~ L  at 
first becomes constant at about 275 for this case and then increases rapidly to the 
homogeneous line where I~a/~ L = Q¢/QL. 
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In figures 12 and 13, data from various literature sources are plotted. The vertical flow 
data of Aladyev et al. (1969) were obtained for potassium two phase flow in a tube of 
diameter range between 0.54 and 0.625 cm. The data give good agreement with figure 11 up 
until QG/QL ~- 300. Beyond this point significant departure is observed as the 1~6/1~ L value 
fell away. The trend is opposite to that expected from ~'SL variation but can be traced to 
the electrical resistance method which was used to measure holdup. The technique 
operated satisfactorily until the point was reached when the flow regime changed from pure 
annular flow into droplet plus annular flow. This latter was a flow regime situation for 
which the apparatus was not calibrated and therefore errors were obtained. Most of the 
other data given in figure 12 were obtained at PSL ) 0.15 m s -  1 and therefore did not show 
any effect of superficial liquid velocity. The expection was the data of Anderson & 
Mantzouranis (1960) for 1.08 cm dia. vertical pipe where a definite effect of liquid 
velocity was observed which roughly corresponded to that presented in figure 11. The data 
of Govier et al. (1957) and Govier & Short (1958) for 2.6 cm dia. pipe and Brown et al. 
(1960) for 3.81 cm alia. tube gave reasonable agreement with that of  figure 11. The 
Argon-water data of Casagrande et al. (1962) for 2.5 cm dia. tube gave reasonable 
agreement up to Qc/QL of 10 and thereafter showed considerable departure from figure 
11 data. The data of Moore & Wilde (1931) for gas-water, gas oil, kerosene and two types 
of light lubricating oils over a pipe size range from 2.54 to 9.6 cm, were scattered and, being 
obviously very inaccurate below Qo/QL of 0.2, that part of the data were omitted from 
the plot. There did not appear to be any effect of diameter on the results but the liquid 
holdup was observed to increase as the viscosity o f  the liquid phase rose for the heavier 
of the lubricating oils. Such an increase is to be expected. Spedding et al. (1982) have 
pointed out that above a liquid viscosity of 2.0-3.0 x 10-2 kg m -  1 s-  ~ the pressure loss will 
increase substantially above that for the air-water system. 

In figure 13, detailed results from the U.S. documentation centre of Govier et al. (1957) 
and Govier & Short (1958) are presented. The former show an effect of  IYSL which 
approximately parallels the data in figure 11, while the latter indicate an effect of diameter 
at const, lYSL. On the figure 13, curve A is for 2.60 cm dia. tube and under, curve B is for 
3.81 cm dia. tube and curve C is for 6.35 cm dia. tube. It is observed, therefore, that the 
liquid holdup increases somewhat with tube diameter. In figure 3 no such effect is given 
for the annular steam-water data of Harrison (1975) at high liquid flow rates for 20 cm 
dia. pipe. In addition the data of Moore & Wilde (1931), which is admittedly scattered, 
does not highlight any diameter effect over a wider range of geometry. However, the slug 
flow data of Govier & Short (1958) exhibit consistent trends which usually accompany 
reliable results and therefore it can be presumed that there is an effect of  diameter in the 
slug flow regime. The limited slug flow data of Lupoli et al. (1973) would add weight to 
this conclusion. This would mean that the relation given by [21] only applies for a diameter 
under about 5 cm while a relation given by [22] possibly is of general application. 

The data of Gill & Hewitt (1962) which are included in figure 13 were obtained from 
film thickness measurements and since the droplet phase is excluded are considerably at 
variance with other work examined here. However, the data do exhibit the general trend 
with superficial liquid velocity which has been observed in figure 11 as well as the tendency 
for the holdup ratio to come to a constant value at Qo/QL greater than 104. 

Other workers have reported on holdup measurement in vertical two phase flow but 
in most cases the data were not in a form to allow them to be used for this comparison 
(see Hughmark & Pressburg 1961; Ros 1961; Cravarola & Hassid 1965; Ueda 1967; Ellis 
& Lloyd Jones 1965; Yamazaki & Shiba 1969; Oshinowo & Charles 1974; and Yamazaki 
& Yamaguchi 1967). 
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Downward f low 

The data for the downward angles of flow are detailed in figures 14-18, together with 
what data are available from the work of Beggs (1972). The limitations of these latter data 
have been mentioned previously. In the interests of clarity it has not been possible to label 
each cross on the diagram with the actual superficial liquid velocity values. However, in 
general, the data give reasonable agreement with the curves on figures 14-18 despite the 
need for interpolation. It is immediately obvious that there is an increase in gas holdup 
for a given set of  conditions compared with the horizontal flow data of figure 2. In essence 
this means that the liquid flows through the pipe more readily 'if downward inclinations 
are employed. For example, comparison between the horizontal data of figure 2 and the 
- 6 . 1 7  ° angle data of figure 14 shows that there is approximately a ten fold increase in 
holdup ratio/~//~L for similar conditions if the pipe is inclined downwards. Since two 
phase flow pipe lines are never exactly level but must be sloped slightly to facilitate 
drainage it is important to ensure that the fall designed into the system is in the direction 
of fluid movement in order to enable the liquid to be handled more readily. 

Again using the parallel with open channel flow it is possible to modify the 
development of [3] and [4] by using the concept of total energy H as applied to figure 19. 

1712 RE 
yl/coS ~t + - -  + 1 sin ct = y2/cos ~t --1 [26] 

2g cos ~t 2g cos 0t 

~2 ~2 
k I + ~ + A Z  ----- k 2 d" - -  = n .  [27] 

2g cos ct 2g cos ~t 

Since H is constant then for the case of inviscid flow in general, 

( H  - k )AL 2 = QL2 [28] 
2g cos ~t 

which gives a cubic relation of the type shown in figure 20, the method of solution of which 
is given in the appendix. The form of the relation is similar to that given by [4] in figure 
6 but [28] gives different values of the critical depth Yc as shown in figure 21 for 
~t = - 6.17 °. The major point to notice is that the actual depth is below the critical depth 
so that the flow is supercritical with the Fr > 1.0. In general, the depth of flow is 
approximately half the critical depth and falls as the angles is increased. The speed of the 
flow is such that disturbances which may manifest themselves as surface waves will be 
carried downstream with the liquid flow thus tending to stabilise the flow into the stratified 
regime. 

The Manning equation is used to express the flow in inclined open channels, 

QL = [AL(r)2/3S'rZ]/n [29] 

where ~ is the hydraulic mean radius being the area of  liquid flow AL over the wetted 
perimeter of  the flow channel, S is the slope of the channel and n the Manning roughness 
coefficient of 0.0095 x 3.2805 = 0.0312 m. Figure 21 shows that the Manning equation 
accurately predicts the actual experimental holdup for the case of  • = - 6 . 1 7  °. Table 1 
gives the critical depth and the actual experimental depth together with the Manning 
equation predictions for various other downward angles of inclination. As far as the 
Manning equation is concerned it gave excellent agreement with experimental holdup data 
for low liquid flow rates at low angles of inclination but appreciable departure occurred 
as these two parameters increased in magnitude. 
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Figure 19. Schematic representat ion o f  free surface channel  flow in a downward  inclined circular 
conduit .  #' = velocity o f  liquid flow. 
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Figure 20. Calculated liquid depth  against  specific energy for the free surface channel  flow in a 
downward  inclined circular conduit  4.54 cm dia. at ~ = - 6.17 °. Qz = liquid volumetric  flow rate. 
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Figure 21. Depth of liquid flow against liquid volumetric flow rate for flow in a downward inclined 
circular conduit of 4..54 cm dia. at • ffi -6.17 °. 

Inclined upwards flow 
Data for inclined upwards flow are shown in figures 22-25 and possess similar overall 

trends to that for vertical upwards flow. Accordingly the data are expressed in the same 
form as [21]-[25] with the details of the actual constants being as shown in table 2. 

CONCLUSIONS 

Experimental data available from the literature for different pipe inclinations (Isbin 
1957, 1959; Fujie 1964; Gorier & Omor 1962; etc.) were shown to be correlated by the 
general correlation method of Chen& Spedding (1983) for the bubble, slug and annular flow 
regimes. Horizontal stratified flow data exhibits constant (~ /~L)  values for low values of 
Qc/QL. Examined in terms of the Bernoulli equation, it was found that the liquid depth 
corresponded to approximately twi~ the critical depth when the liquid rate is below a 
c~rtain value, but approaches the condition of draining of an initially liquid filled horizontal 
tube, when this value of liquid rate is exceeded. The analysis showed that the liquid holdup 
cannot in general be greater than that of the f r~  draining condition although departure 
from inviscid conditions can be expected to increase the holdup, and as such was shown to 
be a special case of the draining of a liquid filled tube. 

Data for vertically upward and upward inclined flows were shown to fall about a series 
of lines having similar shape as, but slightly displaced from, those given by Chen& Spedding 
0983) for horizontal case. Hence, correlation factors were incorporated to describe these 
conditions. 

Data for inclined downward flow showed that for the same flow situations, compared 
with horizontal flow, there is a higher gas holdup indicating a higher liquid velocity. Again, 
the Bernoulli equation was applied treating the situation as open channel flow. It is shown 
that liquid depths are always below the critical depth with Fr > 1.0 and the depth of flow 
in general being approximately half the critical depth. The depth of flow falls with the 
increasing angle of inclination. For small angles of inclination, the Manning equation was 
found to be adequate in describing the liquid depth corresponding to the holdup. 
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Table 2. Correlations of u 

Equation (23) 

Equation (24) 

Equation (25) 

)ward inclined flow holdup data usinl 

Relations with VSL = m s -I 

tn(K1) = -1.44 tn(VSL ) - 0.007 

in(K1) = -0 .93 tn(VsL ) - 0.44 

tn(K1) = -0 .93 tn(VSL ) - 0 .26 

tn(K1) = -0.91 ~n(VSL) - 0,60 

K 2 = 0.14 tn(VSL ) + 1.0 

K 2 = 0.072 tn(Vs~ + 0.66 

K 2 = 0.072 tn(Vs~ + 0 . 7 4  

in(K3) = 0.97 tn(VsL) - 3.0 

in(K3) = 0.96 tn(VSL ) - 3.2 

tn(K3) = 0.88 tn(VsL ) - 3.2 

the K relations of [21]-[25] 

Angle 

+90 ° 

+700 

+450 & 20.750 

+2.750 

+900 & 70 o 

+450 & 20.75 ° 

+2.75 ° 

+90 o 

+70 o 

+450 , 20.75 ° & 2.75 ° 
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A P P E N D I X  

For horizontal stratified free channel flow in tubes [4] applies 

(E - y )(aL) = QL2/(2g ) [4] 

since A L is a function o f y  the liquid depth. 
For example, in the region 0.5 < y/r < 1.5 where A L is a straight line function of y, 

A L = 4.3584y -- 1.8190 [30] 

for a tube diameter of 4.54 cm which corresponds to the main body of data which are 
reported in this work. 
Thus [4] becomes, 

(E - y)(4.3584 y -- 1.8190) 2 = QL2/(2g) [31] 

which is a constant for any given liquid volumetric flow rate, so [31] represents a series of 
curves which are bounded by and asympotes to the lines, 

Y = 0.1417. [32] 

As y/r drops below 0.5 note that the latter equality of [32] will be reduced in value as [30] 
no longer applies. 

To find the critical depth of flow, values of  QL are assumed in [31]. The exact values 
chosen in this work corresponded to the conditions under which the majority of the holdup 
data were obtained. The r.h.s, of [31] is now constant and by assigning values to y the 
corresponding values of E can be obtained. By trial and error calculation the value of E~ at 
the minimum point can be obtained, and this corresponds to y the initial depth. 

Downward inclined stratified flow in tubes is handled in a similar manner except that [28] 
applies in this particular case 

QL2 [28] 
( H  - k )AL  2 = 2g cos  o~ 

Again by assigning a volumetric flow rate and angle of inclination for a given pipe 
diameter, the right hand side becomes a constant. The liquid flow area AL is a function of  
y in the normal way. However k is now related to y, 

k = y / c o s  =. [33] 

Thus by assigning values to y it is possible to calculate the corresponding values for H. Trial 
and error calculations thus will result in finding He, the minimum energy which corresponds 
to the initial depth yc. 


